
Technical Report
CMU/SEI-96-TR-019
ESC-TR-96-019

Carnegie-Mellon University
Cv-, bonwar® tngsneering institute

A
Coming Attractions in Program Understanding

Scott R. Tilley

Dennis B. Smith

',

December 1996

Äppäw©*! fa? psätÄ: »tea«.

.

w

.A

19970128 308

DTIO Qü^LiTI lE'SHöGTEDl

Carnegie Mellon University does nol discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry belief age veteran status sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-96-TR-019

ESC-TR-96-019
December 1996

Coming Attractions in Program Understanding

Scott R. Tilley

Dennis B. Smith

Reengineering Center

Product Line Systems

Unlimited distribution subject to the copyright

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THRCOMMANDER

fRomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILnY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0O03 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is

http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of

Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1. Introduction 1

2. Investigating Cognitive Aspects 3

2.1 Comprehension Strategies 3

2.2 Computer-Supported Cooperative Understanding 4

2.3 Maintenance Handbooks 4

3. Developing Support Mechanisms 7

3.1 Data Gathering 7

3.1.1 Using the Leverage of Mature Technology 7

3.1.2 Alternative Sources of Data 8

3.1.3 Data Filtering 9

3.2 Knowledge Organization 9

3.2.1 Advanced Modeling Techniques 9

3.2.2 Iterative Domain Modeling 10

3.2.3 Scaleable Knowledge Bases 10

3.3 Information Exploration 10

3.3.1 Navigation 11

3.3.2 Analysis 12

3.3.3 Presentation 13

4. Maturing the Practice 15

4.1 Technology Insertion 15

4.2 Empirical Studies 15

4.3 Common Terminology 16

5. Summary 17

Acknowledgments 17

References 19

CMU/SEI-96-TR-019

CMU/SEI-96-TR-019

List of Figures

Figure 1: A Possible Timeline for Coming Attractions in Program Understanding 18

CMU/SEI-96-TR-019

iv CMU/SEI-96-TR-019

Coming Attractions in Program Understanding

Abstract: Program understanding is the (ill-defined) deductive process of
acquiring knowledge about a software artifact through analysis, abstraction,
and generalization. This report identifies some of the emerging technologies
in program understanding. We present technical capabilities currently under
development that may be of significant benefit to practitioners within five
years. Three areas of work are explored: investigating cognitive aspects,
developing support mechanisms, and maturing the practice.

1. Introduction

This report identifies some of the emerging technologies in the area of program
understanding that may to lead to advances that will be available to advanced practitioners
of software engineering over the next five years. Most of these technologies are based on
current research focus areas; a few are based on our judgment. Promising areas are those
with potential to most positively affect software engineers in the next five years, either by
providing revolutionary technologies that enable them to fully or partially automate
previously manual tasks, or by enhancing their capabilities by improving the tools and
techniques used to understanding programs.

Since this paper summarizes a changing field, it will be updated regularly. We invite your
comments and suggestions for updated versions. Please contact us by sending e-mail to
stilley@sei.cmu.edu.

Increased knowledge of software aids in common activities such as performing corrective
maintenance, reengineering, and keeping documentation up-to-date. Much current
research focuses on ways to automate program understanding. However, significant
amounts of domain knowledge, practical experience, and analytical power are required to
achieve program understanding. These elements must usually be supplied by people.

Program understanding is critical in our ability to maintain and reengineer legacy systems.
Many organizations are faced with maintaining aging software systems that are
constructed to run on a variety of hardware types, are programmed in obsolete languages,
and suffer from the disorganization that results from prolonged maintenance. As software
ages, the task of maintaining it becomes more complex and more expensive. Software
engineers must spend an inordinate amount of time creating representations of systems'
high-level architecture from analyses of its low-level source code.

A legacy program may be inherently difficult to understand for several reasons. The
complexity of the problem can make the solution (the program) complex. Poor design,

CMU/SEI-96-TR-019

unstructured programming methods, and crisis-driven maintenance can contribute to poor
code quality, which in turn affects understanding. Structuring mechanisms based on
programming languages can create compatibility problems between the structure of the
program and the structure of the users' mental model. In many cases, the only current,
complete, and trustworthy information about a system is its source code; all other
information must be derived from this.

Problem areas in program understanding can be grouped into the following three broad

categories:

1. Investigating cognitive aspects . This category identifies how humans apply problem-
solving techniques when attempting to understand a program. Topics include
comprehension strategies, computer-supported cooperative understanding, and
scenario-driven maintenance handbooks.

2. Developing support mechanisms . This category identifies how tools can be used to
aid comprehension. Topics include alternative data-gathering techniques, advanced
schemes for organizing knowledge, and hypertext-based information exploration.

3. Maturing the practice : This category identifies how emerging technology can mature
so that it becomes part of the state-of-the-practice. Topics include making technology
sufficiently robust that it is applicable to real-world problems, performing empirical
studies to test the effectiveness of support mechanisms, and defining a universally
accepted lexicon of terms.

We cover each of these categories in this report. Cross-cutting issues that affect these
problem areas, such as scaleability, extensibility, and applicability, are discussed in Section
4. Maturing the Practice. Although these issues do not represent the three categories of
program understanding work, they are extremely important.

CMU/SEI-96-TR-019

2. Investigating Cognitive Aspects

The cognitive aspects of program understanding is the study of the problem-solving
behavior of software engineers engaged in understanding tasks. Because the productivity
of software engineers differs widely, analyzing the strategies used by those who are
successful is most productive. This analysis leads to the development of tools and
techniques that better support program understanding activities.

2.1 Comprehension Strategies

Software engineers employ comprehension strategies when they attempt to understand a
program. To investigate comprehension strategies, you identify what information software
engineers use to understand a software artifact and model how they use it. This is a
fundamental area of research that crosses many disciplines, including software
engineering, education, and cognitive science. A better understanding of comprehension
strategies will enable the development of tools and techniques that provide greater support
for program understanding than is currently possible.

Many theories have been formulated to explain the problem-solving behavior of
maintainers and programmers engaged in program understanding. One survey of this area
compared six cognitive models of program understanding [l]. Most cognitive models are
usually variations on top-down understanding, bottom-up understanding, iterative
hypotheses refinement, or some combination of the three. The bottom-up approach
reconstructs the high-level design of a system, starting with source code, through a series
of chunking1 and concept-assignment steps. The top-down approach begins with a pre-
existing notion of the functionality of the system and earmarks individual components of
the system responsible for specific tasks. The iterative refinement approach creates,
verifies, and modifies hypotheses until the entire system is explained by a consistent set of
hypotheses. The combination approach opportunistically exploits top-down and bottom-up
cues as they become available.

Studies show that maintainers regularly switch between these different appoachs
depending on the problem-solving task at hand. Consequently, no single model explains
all program understanding behavior, even though some models encompass other models.
By investigating comprehension strategies that better reflect the actual understanding
approaches used by expert software engineers, identifying when specific comprehension
approaches are best used will become clearer.

1 Chunking refers to mentally clustering logically related source code fragments together.

CMU/SEI-96-TR-019

2.2 Computer-Supported Cooperative Understanding

As software systems grow in size and in complexity, teams of software engineers
performing maintenance tasks together will become increasingly common. This trend
means that the traditional approach to program understanding, which has focused on a
single person working in isolation, must evolve to support cooperative understanding.

A software system that provides a shared environment to support groups of people
engaged in a common task is sometimes called " groupware". A related term is computer-
supported cooperative work (CSCW), which combines a study of the organizational,
psychological, and social aspects of people working together with the enabling
technologies of groupware [2]. Much work in CSCW is currently focused on using the web
as an infrastructure to support geographically distributed collaborative efforts.

Applying CSCW techniques to program understanding can be called computer-supported
cooperative understanding (CSCU). Although still in its infancy, CSCU shows promise in
program-understanding tasks that require the effort of more than one software engineer.
CSCU enables software engineers with diverse areas of expertise to combine their
knowledge so they can better analyze and modify legacy systems. CSCU also enables
software engineers to work in an asynchronous and location-independent manner. Small
teams of perhaps three to five people can work together to solve a program understanding
problem that may be too complex for a single person to solve on their own.

2.3 Maintenance Handbooks

Many engineering disciplines make extensive use of handbooks to guide practitioners in
solving well-understood problems. For example, electronics technicians have reference
handbooks to help them while repairing complex circuitry. Problem symptoms are often
used as an index into the handbook, where solutions that are known to work for the
problem are explained. The explanation usually includes the tools required to implement
the solution. Such handbooks capture expert strategies that help others who lack the same
experience.

Experience seems to be a significant factor in successfully understanding a program.
Experienced programmers tend to have superior programming knowledge, make better use
of tools, and employ systematic comprehension strategies to make the task easier. They
also tend to have valuable domain expertise that can be used to confront new tasks that
resemble previous ones. Instead of concentrating on how the program works (as a less
experienced person might), a more experienced software engineer tends to form
representations of "what the program does." They attempt to reuse knowledge and
expertise from previous tasks by first looking for a link between what they perceive and an
existing model structure before conceiving a new model.

CMU/SEI-96-TR-019

As we gain more knowledge about how people understand programs by developing
cognitive models and validating them in comprehension experiments, this knowledge
should be codified. This codified knowledge could take the form of maintenance
handbooks that capture the expertise and strategies proven effective for general and
specific maintenance scenarios. Such handbooks would provide practitioners with
prescriptive solutions to common problems.

Maintenance handbooks could evolve to take the form of intelligent agents that aid
software engineers in program understanding tasks. Similar technology is already used in
commercial software to aid users in performing common business tasks, such as writing a
letter. While program understanding tasks are generally more complex and less well-
defined that writing a letter, the use of agents for specific, high-level tasks would be
beneficial because they could automate some parts of the problem-solving excercise.

CMU/SEI-96-TR-019

CMU/SEI-96-TR-019

3. Developing Support Mechanisms

One way of helping software engineers with program-understanding tasks is through
computer-aided support mechanisms. Such tools and techniques can manage the
complexities of program understanding by helping the software engineer extract high-level
information from low-level code. These support mechanisms free software engineers from
tedious, manual, and error-prone tasks such as code reading, searching, and pattern-
matching by inspection.

Reverse engineering is a particularly important type of program understanding support
mechanism. Reverse engineering is seen as an activity that does not change the subject
system; it is a process of examination, not a process of alteration. It aids program
understanding by helping identify artifacts, discover their relationships, and generate
abstractions. The following discussion categorizes the support mechanisms into three
canonical reverse engineering activities [3]: (1) data gathering, (2) knowledge organization,
and (3) information exploration (includes navigation, analysis, and presentation).

So far, reverse engineering has been relatively successful in aiding program
understanding. It is more robust and scaleable than pure, artificial intelligence-based,
automated program understanding tools, easier to use than formal methods based on
theorem-proving, and more attractive than non-computer-aided techniques such as code
reading for very large source codes. Support mechanisms can fit into one (or more) of the
three reverse engineering activity areas.

3.1 Data Gathering

To identify the artifacts and relationships of a system and use them to later construct and
explore higher-level abstractions, you must gather raw data. Hence, data gathering is an
essential reverse engineering activity. New developments in data gathering techniques
benefit practitioners by providing them with more accurate and extensive capabilities they
can use to extract artifacts of interest from their programs. Because data represents the
building blocks upon which more abstract representations of the legacy system are built, it
is critically important that the data gathered not be misleading or subject to
misinterpretation; it must be factual and objective.

3.1.1 Using the Leverage of Mature Technology

The predominant technique used for gather data is parsing a system's source code to
construct abstract syntax trees with the large number of fine-grained syntactic artifacts and
dependencies. To accomplish this, many researchers have spent an inordinate amount of
time building parsers for various programming languages and dialects. However, mature
technology already exists in the compiler arena that will parse source code, perform

CMU/SEI-96-TR-019

syntactical analysis, and produce cross-reference and other information that can be used
by other tools, such as debuggers.

By using the leverage of proven compiler-based technology for data gathering, users of
reverse engineering tools will be assured of predictable results. This is not currently the
case: there are several extraction tools that, when applied to the same source code,
produce somewhat different results [4]. Practitioners and researchers alike will benefit
greatly once traditional tools, such as compilers, are integrated in newer program-
understanding toolsets. This will produce data that is more trusted and accurate.

3.1.2 Alternative Sources of Data

In addition to using data gathered from traditional sources, such as compiler-based static
analysis, work is currently underway to integrate alternative sources of data into reverse
engineering toolsets. Examples include dynamic analysis (for example, profiling), natural-
language content analysis (for example, from comments and/or other documentation, and
source code naming conventions), and informal data extraction (for example, interviewing).
These non-traditional techniques can provide a basis for a more balanced and complete
understanding of programs by emphasizing different attributes of program artifacts and
relationships. This especially can benefit software engineers who work with programs that
are difficult to understand when using only data gathered through static source code
analysis. For example, dynamic analysis provides data that can aid the understanding of
distributed, real-time, client-server programs (applications that are becoming increasingly
predominant, and hence will shortly become legacy systems themselves).

In-line comments2 are a potentially rich source of data about the program, and are often
used by experts when attempting to understand a software artifact. However, automatic
analysis of in-line comments and other written commentary, such as program logic
manuals, is more difficult. Techniques such as natural language analysis are needed to
parse these comments. In addition, judgment must be used to link comments to the code it
purports to describe. Comments may be isolated in the code, or (even worse) they may no
longer reflect reality and may provide conflicting information if the comments were not
updated with the code. Nevertheless, comments represent such a potentially rich data
source that work continues to focus on their analysis.

Another source of data about software programs its human maintainers. Interviewing
techniques can be used to capture the expertise of such people. This "corporate
knowledge" is a potentially valuable asset if it can be applied to program understanding.

Comments written in the same file as the source code.

CMU/SEI-96-TR-019

3.1.3 Data Filtering

No matter what the source, the amount of data gathered for understanding large systems
can be enormous. Large quantities of data can easily overwhelm our ability to assimilate it.
Therefore, the use of intelligent data filtering techniques play an important role in aiding
pronram understanding. Presenting the user with reams of data is insufficient. To
understand the data, the user must also assimilate the data. In a sense, a key to program
understanding is deciding what is material and what is immaterial. In other words, knowing
what to look for and what to ignore [5].

Data filters can be used to extract selected artifacts and relationships from a rich data
source. For example, a profiling tool may be used to gather complete run-time call
information from a program, but the software engineer may be interested in only a subset
of these calls. Such filters can also be used as an interface between tools that do not share
a common data representation.

3.2 Knowledge Organization

For successful program understanding, data must be in a form that facilitates efficient
storage and retrieval, permits analysis of artifacts and relationships, and reflects the users'
perception of the system's characteristics. This form is usually based on a data model. A
data model enables us to understand the essential properties and relationships between
artifacts in a system. Without a model, raw data is almost impossible to understand. We
rely on knowledge-organization techniques to create, represent, and reason about data
models.

3.2.1 Advanced Modeling Techniques

Classical physical data models, such as the hierarchical, network, and relational models,
capture data and their relationships in a form best suited to computer manipulation. In
contrast, advanced modeling techniques capture data and their relationships in a form best
suited to human understanding. These newer modeling techniques provide abstraction
mechanisms that help the software engineer organize knowledge about the subject
system.

One advanced modeling technique is conceptual modeling, which is closer to a human
understanding of a problem domain than to a computer representation of the problem
domain [6]. This technique emphasizes knowledge organization (modeling entities and their
semantic relationships) rather than data organization. The descriptions resulting from
conceptual modeling are intended for use by people—not machines. Because it is
designed for people, conceptual modeling is eminently suited to aiding program
understanding.

CMU/SEI-96-TR-019

3.2.2 Iterative Domain Modeling

Domain modeling is the process of identifying, organizing, and representing the structure
and composition of elements in a problem area. This type of modeling can be to help
organize knowledge about a subject system. The construction of the domain model can
precede reverse engineering (so it can be used to guide the understanding process by
supplying expected constructs), or it can be constructed during reverse engineering (if no
previous knowledge about the domain was available). Hence, a domain model can be a
guide to and a product of reverse engineering, or it can be combined into iterative domain
modeling to support exploratory understanding [7]. The software engineer benefits by
gaining a new method of tool-assisted program understanding. This new method also
enables the software engineer to use tools that automatically recognize standard
components of a system and use these components to populate the domain model. The
software engineer can also use semi-automatic or manual techniques, as part of this new
method, to classify non-standard components and use this information to extend the

domain model.

3.2.3 Scaleable Knowledge Bases

As mentioned earlier, the volume of data produced during the reverse engineering of a
large-scale software system is considerable. Such size and complexity require scaleable
knowledge bases that use fundamentally different approaches to repository technology
than is used in other application domains. For example, not all software artifacts need to be
stored in the repository; some artifacts may be ignored. Coarse-grained artifacts can be
extracted, partial systems can be incrementally investigated, and irrelevant parts can be
ignored to obtain manageable repositories. Once available, scaleable knowledge bases will
enable improved understanding of large software systems.

Scaleable knowledge bases will also need to support CSCU (as discussed in Section 2.2).
This includes access to a central repository in a distributed environment, and
synchronization with workspaces holding the results of local analyses. Dynamic schema
evolution would facilitate this.

3.3 Information Exploration

Because the majority of program understanding takes place during information exploration ,
it is perhaps the most important of the three canonical reverse engineering activities. Data
gathering is required to begin the reverse engineering process. Knowledge organization is
needed to structure the data into a conceptual model of the application domain. The key to
increased comprehension is exploration because it facilitates the iterative refinement of

10 CMU/SEI-96-TR-019

hypotheses. Exploration includes navigating through the hyperspace3 that represents the
information related to the subject system, analyzing and filtering this information with
respect to domain-specific criteria, and using presentation mechanisms to clarify the
resultant information.

3.3.1 Navigation

Large software systems, like other complex systems, are non-linear and may be viewed as
consisting of an interwoven and multidimensional web of information artifacts. The web's
links establish relationships between the artifacts. These relationships can be component
hierarchies, inheritances, data and control flow, and other relationships generated as part
of the reverse engineering process. Navigation allows software engineers to traverse this
"information web" as part of their exploratory understanding activities.

Reducing disorientation . As the size of this web grows, the well-known "lost in
hyperspace" syndrome limits navigational efficiency. Several strategies are being
investigated to meet the classic challenge of reducing disorientation within a large
information space. These strategies include maps, multiple windows, history lists, and
tour/path mechanisms [8]. Unfortunately, many of these methods are not sufficiently
scaleable.

A more promising strategy is the use of composite nodes. These nodes reduce web
complexity and simplify its structure by clustering nodes together to form more abstract,
aggregate objects [9]. Composite nodes interact with sets of nodes as unique entities,
separate from their components. Navigation tools that support such clustering will be very
useful in program understanding.

WWW-based interfaces . Notwithstanding the disorientation challenge discussed above,
hypertext-based navigation can enable the software engineer to choose and deploy
navigation strategies that are most suitable to the task at hand. There are several current
reverse-engineering systems that employ a hypertext user interface. However, such
interfaces generally remain proprietary and require users to learn new interaction methods
and tools to use them effectively. Work is underway to develop these hypertext-based
systems to use more generally-available graphical user interfaces, most notably browsers
for the World Wide Web (WWW). The explosive growth of both the Internet and the
WWW will make it possible for program understanding technology to be delivered to
practitioners in a familiar form (WWW-based interfaces). This delivery mechanism will also
enable practitioners to integrate reverse-engineering support mechanisms no matter where
their actual installation location is.

3 The structured information space composed of "nodes" representing artifacts from the application domain and
"links" representing relationships between the nodes. Sometimes referred to as a "web".

CMU/SEI-96-TR-019 11

Advanced pattern matching . Pattern matching is an essential part of program
understanding. Locating relevant code fragments that implement the concepts in the
application domain requires much effort. Reverse engineering involves the identification,
manipulation, and exploration of artifacts in a particular representation of the subject
system using pattern recognition. This pattern recognition is accomplished either mentally
by the software engineer, or mechanically by the support mechanism. Artifacts are
segmented into features. The patterns of these features are then matched against stored
collections of expected structural motifs. The success of this process depends on the
recollection of existing structural knowledge and on the ability of the person (or tool) to
recognize its presence in a noisy environment.

An emerging trend is the development of advanced pattern-matching techniques that
concentrate more on the meaning of the code rather than on its form. These techniques
will enable the software engineer to reduce the amount of time and effort spent switching
between domains (for example, from the application domain to the implementation domain)
during program understanding. If the patterns can be represented in terms related to the
application domain (where most change requests are couched), then the software engineer
can more easily change the source code with fewer surprises.

3.3.2 Analysis

Analysis is the critical step that derives abstractions from the raw data. Software engineers
use the resultant information to further understand the system. There are many new
analysis techniques currently under investigation that may have significant impact on
practitioners in a few years. One example is slicing [10]. This analysis technique identifies
program code fragments that may affect the value of selected variables. By isolating the
statements that can change the value of a variable (or variables), the cognitive overhead of
understanding a large piece of code is reduced significantly.

End-user programmability. Rather than limiting software engineers to designer-defined
analyses that are invoked using canned methods, it is better to provide mechanisms that
programmers can use to define their own analyses. Some leading-edge reverse-
engineering systems aid program understanding by providing full-fledged programming
languages that can be used to encode analysis methods. Software engineers will be able
to use end-user programmability in reverse engineering support mechanisms to develop
analysis techniques for specific tasks. This flexibility will increase the likelihood that
analyses will better apply to unique software systems.

Automation level . It is important to manage the tradeoff between the functions that are
handled automatically by a reverse engineering tool and the functions that enable the tools
to accept human input and guidance. Current work is focused on how to best balance
between automatic, semi-automatic, and manual approaches, where each is more
applicable, and how the support mechanism can "know" when to ask for expert guidance.
Using the correct automation level can affect both the time taken to complete a program-

12 CMU/SEI-96-TR-019

understanding task, and the level of comprehension achieved. Within the next five years
we will likely see more automation of program understanding tasks as they become better
understood (see Section 2.3 on maintenance handbooks).

Higher-order impact analysis . Estimating the effect of changes before they are
irrevocable has always been an important part of program understanding. Engineers try to
avoid causing massive changes to a system during maintenance. Their avoidance is due,
in part, to practical issues such as recompilation delays, but more importantly because they
are unwilling to create "change waves" that ripple throughout large parts of the system. The
potential for errors caused by these waves is too great. Current tools perform impact
analysis primarily at the syntactic level. Newer research, however, focuses on higher-order
impact analysis tools that allow users to perform "what if" scenarios and analyze the result
of proposed changes. These higher-order impact analysis tools will enable the software
engineer to function at the application-domain level than the implementation-domain level.

3.3.3 Presentation

Because people often use visual metaphors for communicating and understanding
information, it is important to use flexible presentation mechanisms. Currently, most
reverse-engineering systems provide the user with fixed presentation options, such as
cross-reference graphs or module-structure charts. Even though the producers of the
system might consider fixed options adequate, there are always users who want something
else. Ideally, it should be possible to create multiple, perhaps orthogonal, structures and to
view them using a variety of mechanisms (for example, different graph layouts provided by
external toolkits).

Advanced visualization techniques . Graph layout theory has already proven effective in
aiding program understanding. For example, graphical representations of source code
proliferate in current reverse-engineering systems. Refinements to this traditional area also
show promise. An example is so-called "fish-eye" views that emphasize on selected focal
points while retaining relative location information [11]. Exploratory work is underway on
more advanced visualization techniques using three-dimensional data imaging, virtual
reality "code walk-through," and user-defined views. One or more of these techniques may
provide new insights into program understanding.

Tailorable user interfaces . Presentation integration can occur at different levels, including
the window manager, the toolkit used to build applications, and the toolkit's "look and feel"
[12]. The standardization provided by presentation integration lessens the cognitive
surprise experienced by users when switching between tools. However, what is really
needed is a tailorable user interface that permits users to impose their own personal taste
on the common look and feel. This refinement of presentation integration moves the onus,
and the opportunity, for reducing complexity of the user interface from the tool builder to
the tool user.

CMU/SEI-96-TR-019 13

Multimedia. Presentation of analysis results has traditionally taken the form of charts,
tables, or graphs. The recent proliferation of multimedia -enhanced computers introduces
new ways of presenting this information. An area that shows promise is the use of audio
and video annotations as a way of commenting source code, capturing programmer
rationale, and presenting information to the user in more familiar and readily accessible

ways.

14 CMU/SEI-96-TR-019

4. Maturing the Practice

Until recently, most work in program understanding focused on "toy" programs that barely
resembled real-world legacy systems. Fortunately, this has begun to change. As the state-
of-the-art matures and becomes the state-of-the-practice, promising work is focusing on
easing the insertion of program understanding technology, on performing empirical studies,
and on creating a common lexicon of related terms. Practitioners will benefit because
program understanding tools and techniques will be easier to use, more applicable to
everyday tasks, and more widely perceived as a legitimate technology capable of solving
real-world maintenance problems.

4.1 Technology Insertion

For program-understanding technology to have more impact and gain widespread use, it
must address several transition issues, including scaleability, extensibility, and applicability.
Only after addressing these issues can technology insertion take place on a larger scale.
Inserting program understanding technology into current development and maintenance
processes will benefit users by making new capabilities available in a more uniform way.
As a result, using new technologies (such as slicing) will become as commonplace as
established techniques (such as browsing cross-reference charts).

Legacy software systems can contain millions of lines of source code. Because of this,
support mechanisms need to be sufficiently robust to function effectively at this scale.
Increasing the extensibility of support mechanisms through end-user programmability, by
using techniques such as scripting or macro languages, make the integration of program-
understanding tools with the practitioner's existing tools easier. Such extensibility also
enables the use of current reverse-engineering techniques (which are sometimes narrowly
focused) for more general applications.

As repeatedly shown in other fields (for example, CASE), a new technology is only
successful if it integrates with existing tools and processes. Forcing users to adopt radically
new ways of working rarely succeeds. Only through pragmatic technology insertion can
program understanding become less of a novelty and more of an accepted practice.

4.2 Empirical Studies

Experimentation plays an important role in both the theory (investigating cognitive aspects)
and practice (developing support mechanisms) of program understanding. Without
empirical studies, there is no systematic way to validate or refute hypotheses or claims of
functionality. With empirical studies, practitioners can make better and more informed
decisions about how well certain program-understanding technologies apply to their
specific problems.

CMU/SEI-96-TR-019 15

Most engineering disciplines conduct empirical studies as initial investigation or as theory
validation. The sophistication of the empirical studies reflects the maturity of an
engineering field. While empirical studies have been done for performing program-
understanding experiments, much more work is needed. There is a clear need for a
common test suite: a subject system (or systems) that can be used to perform metrics. The
continued maturation of the field depends on the performance of scientific, verifiable, and
repeatable empirical studies. Such studies provide software engineers with independent
and indisputable proof of the gains possible using program-understanding technology and
reduce their reliance on unsubstantiated claims.

Practitioners also stand to benefit from participating in early-adoption trials and case
studies. Such experiments can be win-win situations for researchers and tool developers
as well as tool users. Researchers and tool developers validate, strengthen, or refocus
their work on practical problems. Users gain hands-on experience with the technology
before others and can guide development of the technology to be more beneficial to their

daily work.

4.3 Common Terminology

Established fields of study usually have a common vocabulary with agreed-upon meanings
for key phrases. As the program-understanding community matures, it too will develop
common terminology that will aid researchers and practitioners alike. Clear exchanges of
information will ensure that one of the hallmarks of a developing field will be addressed:
confusion over the meaning of new terminology.

A seminal paper in reverse engineering by Chikofsky and Cross appeared in the January
1990 issue of IEEE Software [13]. It is the first attempt to create a taxonomy of concepts
related to program understanding. The paper identifies often-cited definitions of "reverse
engineering" and many related terms. Unfortunately, different interpretations of "reverse
engineering" and other related phrases remain. For example, there are several "near-
synonyms" for "reengineering." This fact illustrates the relative immaturity of the field's
nomenclature. Work is continuing on refining and expanding this early lexicon.

Practitioners will benefit from common terminology by forcing vendors to use the same
words to represent the same functionality. For example, if a tool claims to extract "business
rules" from source code, there must be a clear definition of what a business rule is in this
context and how it is represented. The move toward common terminology represents a
development in program understanding that is long overdue.

16 CMU/SEI-96-TR-019

5. Summary

This paper presented "coming attractions" in program understanding. These coming
attractions are improved technical capabilities that are under development and could be
ready for evaluation and demonstration in the next five years. Three promising lines of
research were discussed: investigating cognitive aspects, developing support mechanisms,
and maturing the practice. These new capabilities have the potential to make a significant
positive impact on practicing software engineers who are looking ahead.

Figure 1 summarizes improved capabilities under the three promising lines of emerging
technologies. An estimate of when these three developments can be expected, given the
current trends, is included. These time estimates are educated guesses and may be
strongly affected by factors such as funding cuts, market shifts, and technological
breakthroughs. The purpose of the five-year time frame is to stimulate discussion about
likely paths to achieve the goals. These predictions will be updated periodically to reflect
new trends and developments.

Acknowledgments

Thanks to John Salasin of DARPA, Paul Clements of SEI, Alan Brown of Texas
Instruments, Spencer Rugaber of Georgia Institute of Technology, and Bob Moore of Blair
& Associates for providing comments on the early drafts of this paper. This work was
supported in part by the U.S. Department of Defense.

CMU/SEI-96-TR-019 17

Emerging Technology Early Availability
1996 1997 1998 1999 2000

1 Investigating cognitive aspects
Comprehension strategies X

CSCU X

Maintenance handbooks X

2 Developing support mechanisms
Data gathering

Leveraging mature technology X

Alternative sources of data X

Data filtering X

Knowledge organization
Advanced modeling techniques X

Iterative domain modeling X

Scaleable knowledge bases X

Information exploration
Navigation

Reduced disorientation X

WWW-based interfaces X

Advanced pattern matching X

Analysis
End user programmability X

Automation levels X

Higher-order impact analysys X

Presentation
Advanced visualization techniques X

Tailorable user interfaces X

Multimedia X

3 Maturing the practice
Technology insertion X

Empirical studies X

Common terminology X

Figure 1: A Possible Timeline for Coming Attractions in Program Understanding

18 CMU/SEI-96-TR-019

References
[I] A. v. Mayrhauser and M. Vans, "Program Comprehension During Software

Maintenance and Evolution," IEEE Computer, vol. 12, pp. 44-55,1995.

[2] M. Koch, "Introduction to CSCW," Technical University of Munich, Germany
http://www11 .informatik.tu-muenchen.de/cscw/, 1996.

[3] S. R. Tilley, S. Paul, and D. B. Smith, 'Towards a Framework for Program
Understanding," presented at 4th Workshop on Program Comprehension, Berlin,
Germany, 1996.

[4] G. C. Murphy, D. Notkin, and E. S.-C. Lan, "An Empirical Study of Static Call
Graph Extractors," presented at 18th International Conference on Software
Engineering, Berlin, Germany, 1996.

[5] M. Shaw, "Larger Scale Systems Require Higher-Level Abstractions," ACM
SIGSOFT Software Engineering Notes, vol. 14, pp. 143-146, 1989.

[6] B. B. Kristensen and K. Osterbye, "Conceptual Modeling and Programming
Languages," ACM SIGPLAN Notices, vol. 29,1994.

[7] J.-M. DeBaud, B. M. Moopen, and S. Rugaber, "Domain Analysis and Reverse
Engineering," presented at International Conference on Software Maintenance,
Victoria, British Columbia, Canada, 1994.

[8] J. Nielsen, Hypertext and Hypermedia: Academic Press, 1990.

[9] M. A. Casanova, L. Tucherman, M. J. D. Lima, J. L. R. Netto, N. Rodriguez, and
L. F. G. Soares, 'The Nested Context Model for Hyperdocuments," presented at
Hypertext '91, San Antonio, TX, 1991.

[10] M. Weiser, "Program Slicing," IEEE Transactions on Software Engineering , vol.
SE-10, pp. 352-357, 1984.

[II] M. A. D. Storey and H. A. Müller, "Graph Layout Adjustment Strategies,"
presented at Graph Drawing '95, Passau, Germany, 1995.

[12] A. I. Wasserman, 'Tool Integration in Software Engineering Environments,"
presented at International Workshop on Environments, Chinon, France, 1989.

[13] E. J. Chikofsky and J. H. C. II, "Reverse Engineering and Design Recovery: A
Taxonomy," IEEE Software, vol. 7, pp. 13-17,1990.

CMU/SEI-96-TR-xxx 19

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified

a. SECURITY CLASSIFICATION AUTHORITY

J/A
2b. DECLASSIFICATION/DOWNGRADING SCHEDULl.

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-96-TR-019

6a. NAME OF PERFORMS -. ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/AXS

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

lb. RESTRICTIVE MARKINGS

None

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-96-TR-019

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

7b. ADDRESS (city, state, and zip code)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A

11. TITLE (Include Security Classification)

Coming Attractions in Program Understanding

12. PERSONAL AUTHOR(S)
Scott R. Tilley and Dennis B. Smith

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM 1/96 TO 8/96

14. DATE OF REPORT (year, month, day)

August 1996
15. PAGE COUNT

19

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

program understanding, reverse engineering, emerging technology,
advanced practitioner

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Program understanding is the (ill-defined) deductive process of acquiring knowledge about a soft-
ware artifact through analysis, abstraction, and generalization. This report identifies some of the
emerging technologies in program understanding. We present technical capabilities currently under
development that may be of significant benefit to practitioners within five years. Three areas of work
are explored: investigating cognitive aspects, developing support mechanisms, and maturing the

practice.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED | SAME AS RPT[] DTIC USERS |

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code)

(412)268-7631
22c. OFFICE SYMBOL

ESC/AXS (SEI)

DDFORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACE

ABSTRACT — continued from page one, block 19

